Maier, N., Humphrey, N., Harper, J. & Meierbachtol, T. Sliding dominates slow-flowing margin areas, Greenland Ice Sheet. Sci. Adv. 5, eaaw5406 (2019).
Bartholomew, I. et al. Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nat. Geosci. 3, 408–411 (2010).
Hoffman, M., Catania, G. A., Neumann, T., Andrews, L. & Rumrill, J. Hyperlinks between acceleration, melting, and supraglacial lake drainage of the western Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 116, F04035 (2011).
Andrews, L. C. et al. Seasonal evolution of the subglacial hydrologic system modified by supraglacial lake drainage in western Greenland. J. Geophys. Res. Earth Surf. 123, 1479–1496 (2018).
Williams, J. J., Gourmelen, N. & Nienow, P. Dynamic response of the Greenland Ice Sheet to current cooling. Sci. Rep. 10, 1647 (2020).
Tedstone, A. J. et al. Decadal slowdown of a land-terminating sector of the Greenland Ice Sheet regardless of warming. Nature 526, 692–695 (2015).
Van de Wal, R. et al. Self-regulation of ice circulation varies throughout the ablation space in south-west Greenland. Cryosphere 9, 603–611 (2015).
Davison, B. J., Sole, A. J., Livingstone, S. J., Cowton, T. R. & Nienow, P. W. The affect of hydrology on the dynamics of land-terminating sectors of the Greenland Ice Sheet. Entrance. Earth Sci. 7, 10 (2019).
Hoffman, M. J. et al. Greenland subglacial drainage evolution regulated by weakly linked areas of the mattress. Nat. Commun. 7, 13903 (2016).
Stevens, L. A. et al. Greenland Ice Sheet circulation response to runoff variability. Geophys. Res. Lett. 43, 11295–11303 (2016).
Pattyn, F. et al. The Greenland and Antarctic ice sheets below 1.5 °C world warming. Nat. Clim. Change 8, 1053–1061 (2018).
Andrews, L. C. et al. Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet. Nature 514, 80–83 (2014).
Cowton, T., Nienow, P., Sole, A., Bartholomew, I. & Mair, D. Variability in ice movement at a land-terminating Greenlandic outlet glacier: the position of channelized and distributed drainage techniques. J. Glaciol. 62, 451–466 (2016).
Bougamont, M. et al. Delicate response of the Greenland Ice Sheet to floor soften drainage over a smooth mattress. Nat. Commun. 5, 5052 (2014).
Chandler, D. et al. Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers. Nat. Geosci. 6, 195–198 (2013).
Fettweis, X. et al. Estimating the Greenland Ice Sheet floor mass stability contribution to future sea stage rise utilizing the regional atmospheric local weather mannequin MAR. TCryosphere 7, 469–489 (2013).
Mejía, J. et al. Remoted cavities dominate Greenland Ice Sheet dynamic response to lake drainage. Geophys. Res. Lett. 48, e2021GL094762 (2021).
Joughin, I., Smith, B. E. & Howat, I. Greenland ice mapping challenge: ice circulation velocity variation at sub-monthly to decadal time scales. Cryosphere 12, 2211 (2018).
Moon, T. et al. Distinct patterns of seasonal Greenland glacier velocity. Geophys. Res. Lett. 41, 7209–7216 (2014).
Doyle, S. H. et al. Persistent circulation acceleration throughout the inside of the Greenland Ice Sheet. Geophys. Res. Lett. 41, 899–905 (2014).
Gagliardini, O. & Werder, M. A. Affect of accelerating floor soften over decadal timescales on land-terminating Greenland-type outlet glaciers. J. Glaciol. 64, 700–710 (2018).
Goelzer, H. et al. The longer term sea-level contribution of the Greenland Ice Sheet: a multi-model ensemble research of ISMIP6. Cryosphere 14, 3071–3096 (2020).
Maier, N., Gimbert, F., Gillet-Chaulet, F. & Gilbert, A. Basal traction primarily dictated by hard-bed physics over grounded areas of Greenland. Cryosphere 15, 1435–1451 (2021).
Joughin, I., Smith, B., Howat, I. & Scambos, T. MEaSUREs Multi-year Greenland Ice Sheet Velocity Mosaic, Model 1. NSIDC https://doi.org/10.5067/QUA5Q9SVMSJG (2016).
Smith, L. C. et al. Environment friendly meltwater drainage by way of supraglacial streams and rivers on the southwest Greenland Ice Sheet. Proc. Natl Acad. Sci. USA 112, 1001–1006 (2015).
Stevens, L. A. et al. Greenland supraglacial lake drainages triggered by hydrologically induced basal slip. Nature 522, 73–76 (2015).
Selmes, N., Murray, T. & James, T. Quick draining lakes on the Greenland Ice Sheet. Geophys. Res. Lett. 38, L15501 (2011).
Tedstone, A. J. et al. Greenland Ice Sheet movement insensitive to distinctive meltwater forcing. Proc. Natl Acad. Sci. USA 110, 19719–19724 (2013).
Fettweis, X. et al. Reconstructions of the 1900–2015 Greenland Ice Sheet floor mass stability utilizing the regional local weather MAR mannequin. Cryosphere 11, 1015–1033 (2017).
Sole, A. et al. Winter movement mediates dynamic response of the Greenland Ice Sheet to hotter summers. Geophys. Res. Lett. 40, 3940–3944 (2013).
Meierbachtol, T., Harper, J. & Humphrey, N. Basal drainage system response to growing floor soften on the Greenland Ice Sheet. Science 341, 777–779 (2013).
Banwell, A., Hewitt, I., Willis, I. & Arnold, N. Moulin density controls drainage growth beneath the Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 121, 2248–2269 (2016).
Röthlisberger, H. Water stress in intra-and subglacial channels. J. Glaciol. 11, 177–203 (1972).
Schoof, C. Ice-sheet acceleration pushed by soften provide variability. Nature 468, 803–806 (2010).
Stearns, L. A. & van der Veen, C. J. Friction on the mattress doesn’t management quick glacier circulation. Science 361, 273–277 (2018).
Gimbert, F., Gilbert, A., Gagliardini, O., Vincent, C. & Moreau, L. Do current theories clarify seasonal to multi-decadal adjustments in glacier basal sliding velocity? Geophys. Res. Lett. 43, e2021GL092858 (2021).
Catania, G., Stearns, L., Moon, T., Enderlin, E. & Jackson, R. Future evolution of Greenland’s marine‐terminating outlet glaciers. J. Geophys. Res. Earth Surf. 125, e2018JF004873 (2020).
Helanow, C., Iverson, N. R., Woodard, J. B. & Zoet, L. Okay. A slip regulation for hard-bedded glaciers derived from noticed mattress topography. Sci. Adv. 7, eabe7798 (2021).
Moon, T. A., Gardner, A. S., Csatho, B., Parmuzin, I. & Fahnestock, M. A. Speedy reconfiguration of the Greenland Ice Sheet coastal margin. J. Geophys. Res. Earth Surf. 125, e2020JF005585 (2020).
Werder, M. A., Hewitt, I. J., Schoof, C. G. & Flowers, G. E. Modeling channelized and distributed subglacial drainage in two dimensions. J. Geophys. Res. Earth Surf. 118, 2140–2158 (2013).
Brondex, J., Gagliardini, O., Gillet-Chaulet, F. & Durand, G. Sensitivity of grounding line dynamics to the selection of the friction regulation. J. Glaciol. 63, 854–866 (2017).
Ritz, C. et al. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature 528, 115–118 (2015).
Vandecrux, B. et al. Firn knowledge compilation reveals widespread lower of firn air content material in western Greenland. Cryosphere 13, 845–859 (2019).
Zwally, H. J., Giovinetto, M. B., Beckley, M. A. & Saba, J. L. Antarctic and Greenland Drainage Techniques (GSFC Cryospheric Sciences Laboratory, 2012); https://earth.gsfc.nasa.gov/cryo/knowledge/polar-altimetry/antarctic-and-greenland-drainage-systems
Howat, I., Negrete, A. & Smith, B. The Greenland Ice Mapping Undertaking (GIMP) land classification and floor elevation knowledge units. Cryosphere 8, 1509–1518 (2014).
Howat, I., Negrete, A. & Smith, B. MEaSUREs Greenland Ice Mapping Undertaking (GIMP) digital elevation mannequin from GeoEye and WorldView Imagery, Model 1. NSIDC https://doi.org/10.5067/H0KUYVF53Q8M (2017).
Gagliardini, O., Cohen, D., Råback, P. & Zwinger, T. Finite-element modeling of subglacial cavities and associated friction regulation. J. Geophys. Res. Earth Surf. 112, F02027 (2007).
Weertman, J. The idea of glacier sliding. J. Glaciol. 5, 287–303 (1964).
Morlighem, M. et al. BedMachine v3: full mattress topography and ocean bathymetry mapping of Greenland from multibeam echo sounding mixed with mass conservation. Geophys. Res. Lett. 44, 11051–11061 (2017).
Morlighem, M. IceBridge BedMachine Greenland, Model 3. NSIDC https://doi.org/10.5067/2CIX82HUV88Y (2018).
Joughin, I., Smith, B. E. & Howat, I. M. A whole map of Greenland ice velocity derived from satellite tv for pc knowledge collected over 20 years. J. Glaciol. 64, 1–11 (2018).
Gagliardini, O. et al. Capabilities and efficiency of Elmer/Ice, a new-generation ice sheet mannequin. Geosci. Mannequin Dev. 6, 1299–1318 (2013).
Goelzer, H., Robinson, A., Seroussi, H. & van de Wal, R. S. W. Latest progress in Greenland Ice Sheet modelling. Curr. Clim. Change Rep. 3, 291–302 (2017).
Morlighem, M. et al. Spatial patterns of basal drag inferred utilizing management strategies from a full‐Stokes and easier fashions for Pine Island Glacier, West Antarctica. Geophys. Res. Lett. 37, L14502 (2010).
Joughin, I., MacAyeal, D. R. & Tulaczyk, S. Basal shear stress of the Ross ice streams from management technique inversions. J. Geophys. Res. Stable Earth 109, B09405 (2004).
Quiquet, A. & Dumas, C. The GRISLI-LSCE contribution to the Ice Sheet Mannequin Intercomparison Undertaking for section 6 of the Coupled Mannequin Intercomparison Undertaking (ISMIP6)—Half 1: projections of the Greenland Ice Sheet evolution by the top of the twenty first century. Cryosphere 15, 1015–1030 (2021).
Mouginot, J., Rignot, E., Scheuchl, B. & Millan, R. Complete annual ice sheet velocity mapping utilizing Landsat-8, Sentinel-1, and RADARSAT-2 knowledge. Distant Sens. 9, 364 (2017).
MacGregor, J. et al. A synthesis of the basal thermal state of the Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 121, 1328–1350 (2016).
Noël, B. et al. Analysis of the up to date regional local weather mannequin RACMO2. 3: summer season snowfall impression on the Greenland Ice Sheet. Cryosphere 9, 1831–1844 (2015).
Woodard, J., Zoet, L., Iverson, N. R. & Helanow, C. Linking bedrock discontinuities to glacial quarrying. Ann. Glaciol. 60, 66–72 (2019).
Crompton, J. W. & Flowers, G. E. Correlations of suspended sediment dimension with bedrock lithology and glacier dynamics. Ann. Glaciol. 57, 142–150 (2016).
Dawes, P. R. The bedrock geology below the Inland Ice: the subsequent main problem for Greenland mapping. Geol. Surv. Den. Greenl. Bull. 17, 57–60 (2009).
Cooper, M. A. et al. Subglacial roughness of the Greenland Ice Sheet: relationship with up to date ice velocity and geology. Cryosphere 13, 3093–3115 (2019).
Chu, W. et al. Intensive winter subglacial water storage beneath the Greenland Ice Sheet. Geophys. Res. Lett. 43, 12484–12492 (2016).
Cohen, D., Hooyer, T. S., Iverson, N. R., Thomason, J. & Jackson, M. Position of transient water stress in quarrying: a subglacial experiment utilizing acoustic emissions. J. Geophys. Res. Earth Surf. 111, F03006 (2006).
Hallet, B. Glacial quarrying: a easy theoretical mannequin. Ann. Glaciol. 22, 1–8 (1996).
Poinar, Okay., Joughin, I., LENAERTS, J. T. & Van Den Broeke, M. R. Englacial latent-heat switch has restricted affect on seaward ice flux in western Greenland. J. Glaciol. 63, 1–16 (2017).
Harrington, J. A., Humphrey, N. F. & Harper, J. T. Temperature distribution and thermal anomalies alongside a flowline of the Greenland Ice Sheet. Ann. Glaciol. 56, 98–104 (2015).
Karlsson, N. B. et al. A primary constraint on basal melt-water manufacturing of the Greenland Ice Sheet. Nat. Commun. 12, 3461 (2021).
Iken, A. The impact of the subglacial water stress on the sliding velocity of a glacier in an idealized numerical mannequin. J. Glaciol. 27, 407–421 (1981).
Zoet, L. Okay. & Iverson, N. R. A slip regulation for glaciers on deformable beds. Science 368, 76–78 (2020).
Nye, J. F. A calculation on the sliding of ice over a wavy floor utilizing a Newtonian viscous approximation. Proc. R. Soc. Lond. A 311, 445–467 (1969).
Schwanghart, W. & Scherler, D. TopoToolbox 2—MATLAB-based software program for topographic evaluation and modeling in Earth floor sciences. Earth Surf. Dyn. 2, 1–7 (2014).
Covington, M., Gulley, J., Trunz, C., Mejia, J. & Gadd, W. Moulin volumes regulate subglacial water stress on the Greenland Ice Sheet. Geophys. Res. Lett. 47, e2020GL088901 (2020).