Threshold response to soften drives large-scale mattress weakening in Greenland


  • Maier, N., Humphrey, N., Harper, J. & Meierbachtol, T. Sliding dominates slow-flowing margin areas, Greenland Ice Sheet. Sci. Adv. 5, eaaw5406 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartholomew, I. et al. Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nat. Geosci. 3, 408–411 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Hoffman, M., Catania, G. A., Neumann, T., Andrews, L. & Rumrill, J. Hyperlinks between acceleration, melting, and supraglacial lake drainage of the western Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 116, F04035 (2011).

  • Andrews, L. C. et al. Seasonal evolution of the subglacial hydrologic system modified by supraglacial lake drainage in western Greenland. J. Geophys. Res. Earth Surf. 123, 1479–1496 (2018).

    ADS 

    Google Scholar
     

  • Williams, J. J., Gourmelen, N. & Nienow, P. Dynamic response of the Greenland Ice Sheet to current cooling. Sci. Rep. 10, 1647 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tedstone, A. J. et al. Decadal slowdown of a land-terminating sector of the Greenland Ice Sheet regardless of warming. Nature 526, 692–695 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Van de Wal, R. et al. Self-regulation of ice circulation varies throughout the ablation space in south-west Greenland. Cryosphere 9, 603–611 (2015).

    ADS 

    Google Scholar
     

  • Davison, B. J., Sole, A. J., Livingstone, S. J., Cowton, T. R. & Nienow, P. W. The affect of hydrology on the dynamics of land-terminating sectors of the Greenland Ice Sheet. Entrance. Earth Sci. 7, 10 (2019).

    ADS 

    Google Scholar
     

  • Hoffman, M. J. et al. Greenland subglacial drainage evolution regulated by weakly linked areas of the mattress. Nat. Commun. 7, 13903 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stevens, L. A. et al. Greenland Ice Sheet circulation response to runoff variability. Geophys. Res. Lett. 43, 11295–11303 (2016).

    ADS 

    Google Scholar
     

  • Pattyn, F. et al. The Greenland and Antarctic ice sheets below 1.5 °C world warming. Nat. Clim. Change 8, 1053–1061 (2018).

    ADS 

    Google Scholar
     

  • Andrews, L. C. et al. Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet. Nature 514, 80–83 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cowton, T., Nienow, P., Sole, A., Bartholomew, I. & Mair, D. Variability in ice movement at a land-terminating Greenlandic outlet glacier: the position of channelized and distributed drainage techniques. J. Glaciol. 62, 451–466 (2016).

    ADS 

    Google Scholar
     

  • Bougamont, M. et al. Delicate response of the Greenland Ice Sheet to floor soften drainage over a smooth mattress. Nat. Commun. 5, 5052 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chandler, D. et al. Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers. Nat. Geosci. 6, 195–198 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Fettweis, X. et al. Estimating the Greenland Ice Sheet floor mass stability contribution to future sea stage rise utilizing the regional atmospheric local weather mannequin MAR. TCryosphere 7, 469–489 (2013).

    ADS 

    Google Scholar
     

  • Mejía, J. et al. Remoted cavities dominate Greenland Ice Sheet dynamic response to lake drainage. Geophys. Res. Lett. 48, e2021GL094762 (2021).

    ADS 

    Google Scholar
     

  • Joughin, I., Smith, B. E. & Howat, I. Greenland ice mapping challenge: ice circulation velocity variation at sub-monthly to decadal time scales. Cryosphere 12, 2211 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moon, T. et al. Distinct patterns of seasonal Greenland glacier velocity. Geophys. Res. Lett. 41, 7209–7216 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doyle, S. H. et al. Persistent circulation acceleration throughout the inside of the Greenland Ice Sheet. Geophys. Res. Lett. 41, 899–905 (2014).

    ADS 

    Google Scholar
     

  • Gagliardini, O. & Werder, M. A. Affect of accelerating floor soften over decadal timescales on land-terminating Greenland-type outlet glaciers. J. Glaciol. 64, 700–710 (2018).

    ADS 

    Google Scholar
     

  • Goelzer, H. et al. The longer term sea-level contribution of the Greenland Ice Sheet: a multi-model ensemble research of ISMIP6. Cryosphere 14, 3071–3096 (2020).

  • Maier, N., Gimbert, F., Gillet-Chaulet, F. & Gilbert, A. Basal traction primarily dictated by hard-bed physics over grounded areas of Greenland. Cryosphere 15, 1435–1451 (2021).

    ADS 

    Google Scholar
     

  • Joughin, I., Smith, B., Howat, I. & Scambos, T. MEaSUREs Multi-year Greenland Ice Sheet Velocity Mosaic, Model 1. NSIDC https://doi.org/10.5067/QUA5Q9SVMSJG (2016).

  • Smith, L. C. et al. Environment friendly meltwater drainage by way of supraglacial streams and rivers on the southwest Greenland Ice Sheet. Proc. Natl Acad. Sci. USA 112, 1001–1006 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stevens, L. A. et al. Greenland supraglacial lake drainages triggered by hydrologically induced basal slip. Nature 522, 73–76 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Selmes, N., Murray, T. & James, T. Quick draining lakes on the Greenland Ice Sheet. Geophys. Res. Lett. 38, L15501 (2011).

  • Tedstone, A. J. et al. Greenland Ice Sheet movement insensitive to distinctive meltwater forcing. Proc. Natl Acad. Sci. USA 110, 19719–19724 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fettweis, X. et al. Reconstructions of the 1900–2015 Greenland Ice Sheet floor mass stability utilizing the regional local weather MAR mannequin. Cryosphere 11, 1015–1033 (2017).

    ADS 

    Google Scholar
     

  • Sole, A. et al. Winter movement mediates dynamic response of the Greenland Ice Sheet to hotter summers. Geophys. Res. Lett. 40, 3940–3944 (2013).

    ADS 

    Google Scholar
     

  • Meierbachtol, T., Harper, J. & Humphrey, N. Basal drainage system response to growing floor soften on the Greenland Ice Sheet. Science 341, 777–779 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Banwell, A., Hewitt, I., Willis, I. & Arnold, N. Moulin density controls drainage growth beneath the Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 121, 2248–2269 (2016).

    ADS 

    Google Scholar
     

  • Röthlisberger, H. Water stress in intra-and subglacial channels. J. Glaciol. 11, 177–203 (1972).

    ADS 

    Google Scholar
     

  • Schoof, C. Ice-sheet acceleration pushed by soften provide variability. Nature 468, 803–806 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stearns, L. A. & van der Veen, C. J. Friction on the mattress doesn’t management quick glacier circulation. Science 361, 273–277 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gimbert, F., Gilbert, A., Gagliardini, O., Vincent, C. & Moreau, L. Do current theories clarify seasonal to multi-decadal adjustments in glacier basal sliding velocity? Geophys. Res. Lett. 43, e2021GL092858 (2021).

    ADS 

    Google Scholar
     

  • Catania, G., Stearns, L., Moon, T., Enderlin, E. & Jackson, R. Future evolution of Greenland’s marine‐terminating outlet glaciers. J. Geophys. Res. Earth Surf. 125, e2018JF004873 (2020).

  • Helanow, C., Iverson, N. R., Woodard, J. B. & Zoet, L. Okay. A slip regulation for hard-bedded glaciers derived from noticed mattress topography. Sci. Adv. 7, eabe7798 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moon, T. A., Gardner, A. S., Csatho, B., Parmuzin, I. & Fahnestock, M. A. Speedy reconfiguration of the Greenland Ice Sheet coastal margin. J. Geophys. Res. Earth Surf. 125, e2020JF005585 (2020).

    ADS 

    Google Scholar
     

  • Werder, M. A., Hewitt, I. J., Schoof, C. G. & Flowers, G. E. Modeling channelized and distributed subglacial drainage in two dimensions. J. Geophys. Res. Earth Surf. 118, 2140–2158 (2013).

    ADS 

    Google Scholar
     

  • Brondex, J., Gagliardini, O., Gillet-Chaulet, F. & Durand, G. Sensitivity of grounding line dynamics to the selection of the friction regulation. J. Glaciol. 63, 854–866 (2017).

    ADS 

    Google Scholar
     

  • Ritz, C. et al. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature 528, 115–118 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vandecrux, B. et al. Firn knowledge compilation reveals widespread lower of firn air content material in western Greenland. Cryosphere 13, 845–859 (2019).

    ADS 

    Google Scholar
     

  • Zwally, H. J., Giovinetto, M. B., Beckley, M. A. & Saba, J. L. Antarctic and Greenland Drainage Techniques (GSFC Cryospheric Sciences Laboratory, 2012); https://earth.gsfc.nasa.gov/cryo/knowledge/polar-altimetry/antarctic-and-greenland-drainage-systems

  • Howat, I., Negrete, A. & Smith, B. The Greenland Ice Mapping Undertaking (GIMP) land classification and floor elevation knowledge units. Cryosphere 8, 1509–1518 (2014).

    ADS 

    Google Scholar
     

  • Howat, I., Negrete, A. & Smith, B. MEaSUREs Greenland Ice Mapping Undertaking (GIMP) digital elevation mannequin from GeoEye and WorldView Imagery, Model 1. NSIDC https://doi.org/10.5067/H0KUYVF53Q8M (2017).

  • Gagliardini, O., Cohen, D., Råback, P. & Zwinger, T. Finite-element modeling of subglacial cavities and associated friction regulation. J. Geophys. Res. Earth Surf. 112, F02027 (2007).

  • Weertman, J. The idea of glacier sliding. J. Glaciol. 5, 287–303 (1964).

    ADS 

    Google Scholar
     

  • Morlighem, M. et al. BedMachine v3: full mattress topography and ocean bathymetry mapping of Greenland from multibeam echo sounding mixed with mass conservation. Geophys. Res. Lett. 44, 11051–11061 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morlighem, M. IceBridge BedMachine Greenland, Model 3. NSIDC https://doi.org/10.5067/2CIX82HUV88Y (2018).

  • Joughin, I., Smith, B. E. & Howat, I. M. A whole map of Greenland ice velocity derived from satellite tv for pc knowledge collected over 20 years. J. Glaciol. 64, 1–11 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Gagliardini, O. et al. Capabilities and efficiency of Elmer/Ice, a new-generation ice sheet mannequin. Geosci. Mannequin Dev. 6, 1299–1318 (2013).

    ADS 

    Google Scholar
     

  • Goelzer, H., Robinson, A., Seroussi, H. & van de Wal, R. S. W. Latest progress in Greenland Ice Sheet modelling. Curr. Clim. Change Rep. 3, 291–302 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morlighem, M. et al. Spatial patterns of basal drag inferred utilizing management strategies from a full‐Stokes and easier fashions for Pine Island Glacier, West Antarctica. Geophys. Res. Lett. 37, L14502 (2010).

  • Joughin, I., MacAyeal, D. R. & Tulaczyk, S. Basal shear stress of the Ross ice streams from management technique inversions. J. Geophys. Res. Stable Earth 109, B09405 (2004).

  • Quiquet, A. & Dumas, C. The GRISLI-LSCE contribution to the Ice Sheet Mannequin Intercomparison Undertaking for section 6 of the Coupled Mannequin Intercomparison Undertaking (ISMIP6)—Half 1: projections of the Greenland Ice Sheet evolution by the top of the twenty first century. Cryosphere 15, 1015–1030 (2021).

    ADS 

    Google Scholar
     

  • Mouginot, J., Rignot, E., Scheuchl, B. & Millan, R. Complete annual ice sheet velocity mapping utilizing Landsat-8, Sentinel-1, and RADARSAT-2 knowledge. Distant Sens. 9, 364 (2017).

    ADS 

    Google Scholar
     

  • MacGregor, J. et al. A synthesis of the basal thermal state of the Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 121, 1328–1350 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noël, B. et al. Analysis of the up to date regional local weather mannequin RACMO2. 3: summer season snowfall impression on the Greenland Ice Sheet. Cryosphere 9, 1831–1844 (2015).

    ADS 

    Google Scholar
     

  • Woodard, J., Zoet, L., Iverson, N. R. & Helanow, C. Linking bedrock discontinuities to glacial quarrying. Ann. Glaciol. 60, 66–72 (2019).

    ADS 

    Google Scholar
     

  • Crompton, J. W. & Flowers, G. E. Correlations of suspended sediment dimension with bedrock lithology and glacier dynamics. Ann. Glaciol. 57, 142–150 (2016).

    ADS 

    Google Scholar
     

  • Dawes, P. R. The bedrock geology below the Inland Ice: the subsequent main problem for Greenland mapping. Geol. Surv. Den. Greenl. Bull. 17, 57–60 (2009).


    Google Scholar
     

  • Cooper, M. A. et al. Subglacial roughness of the Greenland Ice Sheet: relationship with up to date ice velocity and geology. Cryosphere 13, 3093–3115 (2019).

    ADS 

    Google Scholar
     

  • Chu, W. et al. Intensive winter subglacial water storage beneath the Greenland Ice Sheet. Geophys. Res. Lett. 43, 12484–12492 (2016).

    ADS 

    Google Scholar
     

  • Cohen, D., Hooyer, T. S., Iverson, N. R., Thomason, J. & Jackson, M. Position of transient water stress in quarrying: a subglacial experiment utilizing acoustic emissions. J. Geophys. Res. Earth Surf. 111, F03006 (2006).

  • Hallet, B. Glacial quarrying: a easy theoretical mannequin. Ann. Glaciol. 22, 1–8 (1996).

    ADS 

    Google Scholar
     

  • Poinar, Okay., Joughin, I., LENAERTS, J. T. & Van Den Broeke, M. R. Englacial latent-heat switch has restricted affect on seaward ice flux in western Greenland. J. Glaciol. 63, 1–16 (2017).

    ADS 

    Google Scholar
     

  • Harrington, J. A., Humphrey, N. F. & Harper, J. T. Temperature distribution and thermal anomalies alongside a flowline of the Greenland Ice Sheet. Ann. Glaciol. 56, 98–104 (2015).

    ADS 

    Google Scholar
     

  • Karlsson, N. B. et al. A primary constraint on basal melt-water manufacturing of the Greenland Ice Sheet. Nat. Commun. 12, 3461 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iken, A. The impact of the subglacial water stress on the sliding velocity of a glacier in an idealized numerical mannequin. J. Glaciol. 27, 407–421 (1981).

    ADS 

    Google Scholar
     

  • Zoet, L. Okay. & Iverson, N. R. A slip regulation for glaciers on deformable beds. Science 368, 76–78 (2020).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nye, J. F. A calculation on the sliding of ice over a wavy floor utilizing a Newtonian viscous approximation. Proc. R. Soc. Lond. A 311, 445–467 (1969).

    ADS 

    Google Scholar
     

  • Schwanghart, W. & Scherler, D. TopoToolbox 2—MATLAB-based software program for topographic evaluation and modeling in Earth floor sciences. Earth Surf. Dyn. 2, 1–7 (2014).

    ADS 

    Google Scholar
     

  • Covington, M., Gulley, J., Trunz, C., Mejia, J. & Gadd, W. Moulin volumes regulate subglacial water stress on the Greenland Ice Sheet. Geophys. Res. Lett. 47, e2020GL088901 (2020).

    ADS 

    Google Scholar
     

  • Add Comment