A tool-independent quantum key distribution system for distant customers


  • Mayers, D. and Yao, A. Quantum cryptography with imperfect equipment. In Proc. thirty ninth Annual Symposium on Foundations of Pc Science 503–509 (IEEE, 1998).

  • Acn, A. et al. System-independent safety of quantum cryptography towards collective assaults. Phys. Rev. Lett. 98, 230501 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Pironio, S. System-independent quantum key distribution safe towards collective assaults. New J. Phys. 11, 045021 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Barrett, J., Hardy, L. & Kent, A. No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Reichardt, B. W., Unger, F. & Vazirani, U. Classical command of quantum techniques. Nature 496, 456–460 (2013).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Lim, C. C. W., Portmann, C., Tomamichel, M., Renner, R. & Gisin, N. System-independent quantum key distribution with native Bell take a look at. Phys. Rev. X 3, 031006 (2013).

    CAS 

    Google Scholar
     

  • Vazirani, U. & Vidick, T. Totally device-independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Miller, C. A. & Shi, Y. Strong protocols for securely increasing randomness and distributing keys utilizing untrusted quantum units. J. ACM 63, 1–63 (2016).

    MathSciNet 
    Article 

    Google Scholar
     

  • Arnon-Friedman, R. et al. Sensible device-independent quantum cryptography by way of entropy accumulation. Nat. Commun. 9, 459 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Bell, J. S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fizik. 1, 195–200 (1965).

    MathSciNet 
    Article 

    Google Scholar
     

  • Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. & Wehner, S. Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Scarani, V. Bell Nonlocality (Oxford Univ. Press, 2019).

  • Xu, F., Ma, X., Zhang, Q., Lo, H.-Ok. & Pan, J.-W. Safe quantum key distribution with reasonable units. Rev. Mod. Phys. 92, 025002 (2020).

    MathSciNet 
    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Rosenfeld, W. et al. Occasion-ready Bell take a look at utilizing entangled atoms concurrently closing detection and locality loopholes. Phys. Rev. Lett. 119, 010402 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Schwonnek, R. et al. System-independent quantum key distribution with random key foundation. Nat. Commun. 12, 2880 (2021).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014).

    MathSciNet 
    Article 

    Google Scholar
     

  • Ekert, A. Ok. Quantum cryptography based mostly on Bell’s theorem. Phys. Rev. Lett. 67, 661663 (1991).

    MathSciNet 
    Article 

    Google Scholar
     

  • Scarani, V. et al. The safety of sensible quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Hensen, B. et al. Loophole-free Bell inequality violation utilizing electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Giustina, M. et al. Vital-loophole-free take a look at of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Shalm, L. Ok. et al. Sturdy loophole-free take a look at of native realism. Phys. Rev. Lett. 115, 250402 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Murta, G. et al. In the direction of a realization of device-independent quantum key distribution. Quantum Sci. Technol. 4, 035011 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ho, M. et al. Noisy preprocessing facilitates a photonic realization of device-independent quantum key distribution. Phys. Rev. Lett. 124, 230502 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Xu, F., Zhang, Y.-Z., Zhang, Q. & Pan, J.-W. System-independent quantum key distribution with random postselection. Phys. Rev. Lett. 128, 110506 (2022).

    MathSciNet 
    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Nadlinger, D. P. et al. Experimental quantum key distribution licensed by Bell’s theorem. Nature https://doi.org/10.1038/s41586-022-04941-5 (2002).

  • Liu, W.-Z. et al. Photonic verification of device-independent quantum key distribution towards collective assaults. Preprint at https://arxiv.org/abs/2110.01480 (2021).

  • Arnon-Friedman, R., Renner, R. & Vidick, T. Easy and tight device-independent safety proofs. SIAM J. Comput. 48, 181–225 (2019).

    MathSciNet 
    Article 

    Google Scholar
     

  • Clauser, J. F. et al. Proposed experiment to check native hidden-variable theories. Phys. Rev. Lett. 23, 880884 (1969).

    Article 
    ADS 

    Google Scholar
     

  • Renner, R. Safety of quantum key distribution. Int. J. Quantum Inf. 6, 1–127 (2008).

    Article 

    Google Scholar
     

  • Tan, E. Y. Z. et al. Improved DIQKD protocols with finite-size evaluation. Preprint at https://arxiv.org/abs/2012.08714 (2020).

  • Hofmann, J. et al. Heralded entanglement between broadly separated atoms. Science 337, 72–75 (2012).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • van Leent, T. et al. Lengthy-distance distribution of atom-photon entanglement at telecom wavelength. Phys. Rev. Lett. 124, 010510 (2020).

    Article 

    Google Scholar
     

  • Fürst, M. Excessive pace optical quantum random quantity era. Decide. Categorical 18, 1302913037 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Braunstein, S. L. & Pirandola, S. Aspect-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012).

    Article 
    ADS 

    Google Scholar
     

  • van Leent, T. et al. Entangling single atoms over 33 km telecom fibre. Nature https://doi.org/10.1038/s41586-022-04764-4 (2022).

  • Portmann, C. & Renner, R. Safety in quantum cryptography. Preprint at https://arxiv.org/abs/2102.00021 (2021).

  • Endres, M. et al. Atom-by-atom meeting of defect-free one-dimensional chilly atom arrays. Science 354, 1024–1027 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Barredo, D., De Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Ohl de Mello, D. et al. Defect-free meeting of 2D clusters of greater than 100 single-atom quantum techniques. Phys. Rev. Lett. 122, 203601 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Schupp, J. et al. Interface between trapped-ion qubits and touring photons with close-to-optimal effectivity. PRX Quantum 2, 020331 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Volz, J. et al. Statement of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Rosenfeld, W. Experiments with an Entangled System of a Single Atom and a Single Photon. PhD thesis, Ludwig-Maximilians-Universität München (2008).

  • Add Comment